
A New Writing Experience:
Finger Writing in the Air Using
a Kinect Sensor

W ith the introduction of Microsoft

Kinect, there has been considerable

interest in creating various attractive and feasi-

ble applications in related research fields.

Kinect simultaneously captures depth and color

information and provides real-time, reliable 3D

full-body human-pose reconstruction that

essentially turns the human body into a con-

troller.1 Kinect has opened a new era for more

advanced and natural human-computer inter-

action (HCI), and many exciting applications,

from gaming to the medical field, have been

developed. In this article, we present a finger-

writing system that recognizes characters writ-

ten in the air without the need for an extra

handheld device. This application would allow

for brand-new natural user interaction (NUI)

experiences, especially for remote applications.

It is believed that HCI is becoming increas-

ingly similar to the interaction among people. A

traditional keyboard and mouse is the most

common way to “talk with” machines. In recent

years, more advanced remote controllers (such

as the Nintendo Wii remote) and touchscreens

have been widely used and enjoyed by users.

However, a handheld device is still needed. We

propose using a hand to write in the air by treat-

ing the fingertip as a virtual pen. Using Kinect

system, users can input characters by moving

their hands, enjoying a full-body-controlled

experience. The remote input could enable sev-

eral real-world services such as remote signa-

tures. “Writing in the air with hands” can serve

as a fun way to teach young students how to

write. The finger-writing-in-the-air system based

on Kinect allows the user to write in the air in a

natural, unconstrained way that might be an

essential component for the next generation

of HCI.

By incorporating depth and visual informa-

tion, we can directly track the hand-finger

trajectory and recognize characters written in

the air in real time. The first step is to segment

the hand from the cluttered background by

combining color and depth sequences. A

depth-skin-background mixture model (DSB-

MM) is proposed for hand segmentation to

solve traditional problems associated with

Kinect such as illumination variation, hand-

face overlapping issues, and color-depth

mismatch. Second, a dual-mode switching

algorithm is used to accurately detect the fin-

gertip from various hand poses. The trajectory

of the fingertip is extracted and linked and then

reconstructed as an inkless character. A state-of-

the-art handwriting character recognition

method is employed to generate the final out-

put. Figure 1 shows the framework of our sys-

tem. This article describes each component of

the system in more detail.

Hand Segmentation Using Depth and
Color Sequences
Hand segmentation is usually the first step of a

hand-based application, and it directly affects

the performance of the following procedures. A

skin-based color model has been widely used

because of the distinguishable color differences

between a hand and the background.2 This

type of color model faces serious challenges in

certain conditions such as when the illumina-

tion varies, in a cluttered environment, and

when the hand and face overlap.

Editor’s Note

The Kinect effect is transforming human-machine interaction in mul-

tiple industries. “Writing in the air with hands” is one such exciting

example. This article unravels the enabling technologies behind this

promising finger-writing system.

Xin Zhang,
Zhichao Ye,
Lianwen Jin,
Ziyong Feng, and
Shaojie Xu
South China
University of
Technology

Multimedia at Work Wenjun Zeng
University of Missouri, zengw@missouri.edu

1070-986X/13/$31.00�c 2013 IEEE Published by the IEEE Computer Society 85



The frame-difference-based motion-cue

method can also be applied to localize the

hand.3,4 This method strongly relies on the

assumption that the hand should be the most

distinct moving object, which limits its

application.

Although the depth information provided

by Kinect can account for background variation

and color similarity issues, directly and solely

applying a depth sequence does not return sat-

isfactory results because of its low resolution

and strong noise. Additionally, the color-depth

nonsynchronization problem is a new chal-

lenge because color and depth sequences are

not recorded and updated at the exact same

time by Kinect. Therefore, we propose a depth-

skin-background mixture model (DSB-MM) for

fast and accurate hand segmentation.

Depth Model

The depth information provided by Kinect is a

640� 480 grayscale image that encodes the dis-

tance of the scene object surfaces from the

Kinect’s viewpoint. With the 3D distance infor-

mation, the depth image can partially solve the

typical issues of the appearance-based segmen-

tation model, such as color similarity, lighting

variations, and a moving background.

The basic assumption of this depth-based

segmentation model is that the hand is the

closest part of the human body to the sensor

during writing. Given a depth image, we first

employ a “user map” offered by Kinect to

extract a human body from the background.

Second, we carry out preprocessing by applying

morphology operations such as erode and

dilate operations to remove the noise. The third

step is to find the smallest depth value dmin

within the body region, and a depth-based

hand mask D is defined accordingly by apply-

ing an adaptive threshold, which is the key con-

tribution in this work.

Because the hand volume is fixed, an inverse

proportion exists between the hand depth sd

and the segmentation hand region R during the

hand-pose variations. As Figure 2 shows, a

larger value of sd should have a smaller seg-

mented hand region and vice versa. Assuming

R(n) is the hand region at frame n, we use sd nð ÞIE
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as the threshold for the segmentation of frame

nþ 1ð Þ and obtain the corresponding region

R nþ 1ð Þ0. sd is updated by

sd nþ 1ð Þ ¼ sd nð Þ þ RðnÞ
Rðnþ 1Þ0

� 1

� �
x

where x is the growth factor. sd should change

within the range smin; smax½ �, which is deter-

mined by experiments and statistics. Hence,

the segmented result of the depth model at

frame nþ 1ð Þ is then updated as D nþ 1ð Þ with

the region R nþ 1ð Þ by applying sd nþ 1ð Þ for

resegmentation.

The depth model can roughly identify the

hand position but not accurately determine the

segmented region and clear edges. As Figure 3a

shows, the depth-based segmented hand region

has noisy edges. It also contains a large falsely

segmented area for a moving hand in Figure 3b

because of the color-depth nonsynchronization

issue. Hence, other models are necessary.

Skin Model

The skin model serves an important role in a

range of hand-related research. Hence, we build

a robust skin model characterizing both skin

and nonskin distributions as single Gaussian

distributions in the YCbCr color space. We have

designed two strategies to save storage space

and computational load. First, instead of build-

ing a skin model directly in 3D space, we quan-

tify the Y component into three regions: bright

170 � Y � 255ð Þ, normal 85 � Y � 169ð Þ, and

dark 0 � Y � 84ð Þ. Second, Mahalanobis-dis-

tance-based lookup tables are generated for the

skin and nonskin models to reduce the compu-

tational load. The file size of the lookup table

for the YCbCr space is 256 Mbytes, but our

quantified Y-component-based CbCr tables is

only 2 Mbytes.

As we discussed earlier, the combined depth-

skin model helps to remove extra background

pixels from the depth-model segmentation

result and skin-like pixels from the skin-model

segmentation result. However, the nonsynchro-

nization issue in the color-depth sequences cap-

tured by Kinect leads to irreversible and

incorrect segmentation, as shown in Figure 4.

Note the thumb is missing in Figure 4d.

Background Model

The color-depth mismatch problem we men-

tioned earlier occurs because two images that

are not recorded at the exact same time by

Kinect—that is, they do not represent the same

scene. Because the missing pixels belong to the

moving foreground object, we believe a back-

ground model could help. We apply a codebook

background model proposed in previous work5,6

that aims to create a statistical model for the

background and detect the object of interest as

the foreground. In our case, we only consider

the Cb and Cr channels to save computational

load and memory storage. Instead of updating

all the pixels that are recognized as the back-

ground, we only update the pixels detected as

the nonhand region by the DSB-MM, which will

be introduced in the next subsection. This tar-

get-oriented codebook model can immediately

capture changes in the background scene and

avoid the hysteresis phenomenon.6 When the

hand remains motionless for a long period of

time, the pixels of the hand won’t be “absorbed”

or incorrectly learned as a new object.

Figure 5 illustrates some results using the

codebook model. Figures 5c and 5d show that

part of the hand is missing when it is around

the face because the face color information has

been identified as part of the background dur-

ing previous frames. Hence, it is not enough to

only use a background model.

Generally speaking, the depth, skin, and

background models have their own advantages

and limitations. The depth model is robust to

illumination variation and skin similarity but is

greatly influenced by strong noise, particularly

along the hand boundary and in certain poses.

Skin-model-based hand segmentation has been

widely used, and some of its limitations can be

successfully removed by the depth model.

However, the depth-skin model combination

fails when the depth and color sequences are

mismatched because of hardware limitations.
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Figure 3. Zoomed-in depth-model segmentation result superimposed onto a

color image. (a) A static hand and (b) a moving hand.
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Hence, we introduce a background model to

account for the depth-color nonsynchroniza-

tion and noisy segmentation contour. The key

issue here is how to merge the three models for

the best final segmentation result.

DSB-MM Segmentation

The depth-skin-background mixture model

(DSB-MM) combines the depth, skin, and back-

ground models to address their individual

advantages and limitations. The DSB-MM func-

tions similarly to an expert voting system.

Instead of simply voting “yes” (the pixel of the

segmentation result has value of 1) or “no”

(value 0), we make the DSB-MM more adaptive

because each model should have different reli-

abilities in different circumstances.

We present an artificial neural network

(ANN) that contains three layers with three

inputs, nine outputs (three as a group that

determine which energy factor is chosen for

each model), and a hidden layer including 30

neurons, as illustrated in Figure 6. The ANN is

trained with the resilient back propagation

algorithm (RPROP) with a sigmoid function as

the activation function. The inputs of the ANN

are three overlapping rates (OLRs) (skin versus

depth, skin versus background, and back-

ground versus depth) that measure the consis-

tency between the segmentation results of

the two models. The outputs of the ANN are the

Input layer

Hidden layer
Output layer

α

β

γ

OLRs_d

OLRs_f

OLRf_d

Figure 6. Architecture of the artificial neural network (ANN).

Figure 5. Background-model segmentation result. (a) Color image and (b) and foreground codebook model result. Performance

decreases (c) when the hand overlaps with the face image, (d) as the foreground codebook model result shows.

Figure 4. Color depth-model segmentation result. (a) Color image, (b) zoomed-in depth model result, (c) skin-model result, and (d)

zoomed-in combination of the depth- and skin-model results.

Multimedia at Work

88



confidence factors of the three models a, b, and c.
During the training process, the model that has a

larger OLR with the other two models is assigned

a higher confidence factor. There are two assump-

tions used in the ANN design:

� All the models contribute to the final result,

which means that every model has a confi-

dence factor larger than 0.

� None of the models is absolutely reliable

(the confidence factor cannot be 1), which

leads to the conclusion that a pixel finally

treated as hand must be detected as a target

(hand) by at least two models.

The final results are determined by the linear

combination of these three models; the models’

weights are their own confidence factors (hav-

ing values from 0 to 1) provided by the ANN.

The pixel with a combined value equal to or

greater than 1 is considered a hand pixel.

Figure 7 shows the flowchart for DSB-MM

segmentation. First, the background, skin,

and depth models are employed to segment

the hand regions individually. The overlap-

ping rates of every two models are computed

as the inputs of the trained ANN model. The

outputs of the ANN are the three confidence

factors, which are weights of the linear combi-

nation of the three models. The background

model is initialized by the depth-skin model

result of the first N frames (we set N to 15).

In the following frames, the background

model is updated using the nonhand region

determined by the DSB-MM to avoid the hys-

teresis phenomenon.

Figure 8 illustrates the results. We show the

original images and superimposed results of the

depth model, skin model, background model,

and final DSB-MM. The figure clearly shows that

none of the models alone can outperform the

proposed model. The depth model results have

larger and mismatched regions, while the skin

model results always include the face region

and unwanted background. Furthermore, the

background model has serious difficulties when

attempting to distinguish a hand that is near

the face. The proposed DSB-MM obtains the

best performance.

Fingertip Detection
After hand segmentation, a fingertip detection

algorithm is applied to track the writing trajec-

tory. We propose a dual-mode (side and frontal)

switching algorithm, which covers all the possi-

ble hand poses during writing with different

fingertip-detection approaches.

The side mode indicates that the finger is

not pointing toward the camera, as shown in

the outer circle in Figure 9. Although the finger

is usually distinguishable in the segmented 2D

region in this mode, previous vision-based fin-

gertip detection algorithms such as local maxi-

mum curvature7 and template matching8 were

sensitive to the hand-pose orientation and seg-

mentation noise. Hence, we assume the finger-

tip is the farthest point from the arm point in

the segmented hand region when considering
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the depth information and the physical rela-

tionship of the finger, hand, and arm.

The frontal mode indicates that the finger is

almost pointing at the camera, as shown in the

inner circle in Figure 9. The frontal mode can

handle a set of specific poses when visual cues

are invalid. In this mode, the fingertip may not

always be the farthest point from the arm in the

segmented area, but it is definitely the nearest

point in the hand region to the camera—that

is, the point with the smallest depth value.

Based on our analysis and experimental

observations, the hand pose belongs to the side

mode if the following two criteria are satisfied.

First, intuitively, the farthest point pf from the

arm in the segmented 2D hand region should

not be in the palm area. As Figure 10 shows, the

palm area is obtained by applying an ellipse-

fitting technique for three iterations, and the

central point of the final ellipse is regarded as

the palm point. To determine the arm point, we

increase the depth threshold in the depth

model, and the newly included pixels belong to

the arm. The arm point can be located by calcu-

lating the center of the increased region.

(a) (b) (c) (d) (e)

Figure 8. Segmentation results of the three single models and proposed DSB-MM. (a) Original images, (b) depth model, (c) skin model,

(d) background model, and (e) mixture model.

Y

X
Z

Figure 9. Various hand poses for writing. The outer dashed circle illustrates

the poses of the side mode, and the inner circle illustrates the poses of the

frontal mode.
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Second, considering the physical limitations of

a human, the angle h between the hand direc-

tion (the line connecting palm and arm points)

and the finger direction (the line connecting pf

and the palm point) is less than a certain value

(we set it to 30�). If the hand pose belongs to

the side mode, the fingertip is pf .

Otherwise, we switch to the frontal mode.

From our experiments, we notice that there is a

black area around the fingertip in the depth

image because the infrared light is scattered by

the fingertip and depth values are incorrectly

set to 0. We employ the inpainting technique9

to fill the hole using nearby pixels. The fingertip

is the point with the smallest depth value of the

recovered hand region.

We use one finger-writing sequence to dem-

onstrate mode switching between the frontal

and side modes in Figure 11. Additionally, the

effectiveness of the proposed algorithm is illus-

trated by showing the frame-wise pixel distance

between the detected and manually marked fin-

gertips. The side-mode-only plot (red line) signifi-

cantly increases when the finger is pointing

directly at the camera (frames 40 to 60). On the

other hand, the frontal-mode-only plot (blue

line) has large errors when the finger is pointing

to the side (frames 110 to 120). Obviously, our

method can intelligently choose the proper mode

for different hand poses to attain the best result.

Finger-Writing Character Recognition
The finger-writing trajectory is generated by

linking all detected fingertip positions from

continuous frames together, as shown in

Figure 12. The linked trajectory is then passed

into a mean filter to remove noise and jitter

caused by incorrect fingertip detection and

larger hand movement. Figure 13 shows some

examples of reconstructed written trajectories

and the smoothed filtered results.

We use a compact modified quadratic dis-

criminant function (MQDF) character classi-

fier10 for finger-writing trajectory recognition.

After extracting the modified eight-direction

features of 1,024 dimensions, the original fea-

ture is reduced to 160 dimensions by linear dis-

criminant analysis (LDA) and recognized by an

MQDF classifier, which outputs the final result.

The classifier can recognize 6,763 frequently

used Chinese characters, 26 English letters

(both uppercase and lowercase), and 10 digits.

A preliminary character recognition experi-

ment was conducted on 375 videos with a total

of 44,522 frames. We successfully recognized

6,763 frequent Chinese characters, all English

characters (lowercase and uppercases), and all

digits. As summarized in Table 1, we achieved an

accuracy rate of more than 90 percent for the first

five candidates. The recognition rate for Chinese

characters is slightly lower because it usually con-

tains a more complex structure. The finger-writ-

ing-in-the-air system was tested using a PC with

an Intel Core i5-2400 CPU running at 3.10 GHz

and 4 Gbytes of RAM at 20 frames per second

(fps). In general, our system achieves satisfactory

and promising results for real-time applications.

Conclusion
Using a new ANN-based DSB-MM for hand seg-

mentation and a dual-mode switching algo-

rithm that can deal with all possible hand

poses for writing, the proposed state-of-art

handwriting character recognition method
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facilitates inkless character recognition. Our

experiments show that the user can write freely

in the air, and the real-time recognition rates

for the input of Chinese characters, English let-

ters (upper and lower case), and digits are all

greater than 90 percent for the first five candi-

dates. In the future, we plan to collect more

written trajectories to train an incremental

character recognition model and design a few

intuitive hand gestures for the system control

and interaction. MM
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